图1:斯氏按蚊(Anopheles stephensi)的代表性标本图像。左图为-80℃冷冻保存的蚊子,右图为室温下干燥的蚊子。
12月17日,美国罗德岛大学的研究人员在学术期刊《科学公共图书馆——被忽视的热带病》发表了一项最新研究。他们用1709张蚊子照片和其对应的蚊子性别、属、种和品系训练卷积神经网络,成功训练出能归类蚊子的人工智能网络。这些蚊子从16个蚊虫聚集区收集而来,包括一些辨认难度极高的品种。图2:研究图像数据集中的示例图像
结果表明,研究中的卷积神经网络可以将传染疟疾的按蚊与其他蚊子区分开来,并且能够识别按蚊的具体品种和性别,甚至分辨同一个物种(specie)中的两个品系(strain)。图3: 原始图像数据集被分为训练、验证和测试三个部分
研究人员称,这项研究证明,通过深度学习进行图像分类可以成为识别疟蚊的有效方法。在实际使用过程中,需要用到显微镜、用于图像采集的摄像机和CPU。他们认为,有必要进行进一步的调查,以确定如何在实地环境中实施此类方法,并与现有的蚊虫监测计划相协调。